博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【编程之美学习笔记】2.1求二进制数中1的个数
阅读量:5080 次
发布时间:2019-06-12

本文共 4183 字,大约阅读时间需要 13 分钟。

问题:对于一个字节(8bit)的无符号整型变量,求其二进制表示中“1”的个数,要求算法的执行效率尽可能高。

解法一:除、余操作

我们知道,对于二进制操作,除以一个2,原来的数字将会减少一个0,如果除的过程中有余,那么就表示当前位置有一个1,所以可通过相除和判断余数的值来分析。

【时间复杂度O(log2v),log2v为二进制数的位数,空间复杂度O(1)】

1 int Count(int v){2     int num = 0;3     while(v){4         if(v % 2 == 1) num++;5         v = v/ 2;6     }7     return num;8 }
View Code

 解法二:位操作

我们也知道,向右移位操作同样可以达到相除的目的,对于如何判断移位之后是否有1存在,可以在右移位过程中,将这个八位数字与00000001进行“与”操作,如果结果为1,则表示当前八位数的最后一位为1,否则为0.

【时间复杂度O(log2v),空间复杂度O(1)】

1 int Count(int v){2     int num = 0;3     while(v){4         num += v & 0x01;5         v >>= 1;6     }7     return num;8 }
View Code

 解法三:高效位操作

我们发现,前面两种操作,对于一些数,比如10000000,就会浪费大量时间在无用的0上,那么能不能让算法的复杂度只与“1”的个数有关呢?

通过观察发现有个规律:使 v = v & (v - 1),可以去除数 v 的二进制中最后一个1,

比如 01000010 & (01000010 - 00000001)= 01000000 & 01000001 = 01000000

      01000000 & (01000000 - 00000001) = 01000000 & 00111111 = 0

【时间复杂度O(M),即二进制中“1”的个数,空间复杂度O(1)】

1 int Count(int v){2     int num = 0;3     while(v){4         v &= (v-1);5         num++;6     }7     return num;8 }
View Code

 解法四:分支操作

罗列出0~255的情况,并使用分支操作得到答案。但是这个方法看似直接,执行效率却可能低于上述解法,因为分支语句的执行情况要看具体字节的值,例如,若v = 0,在第一个case就能得出答案,但是若v = 255,则要比较255次!因此该解法并不可取,但提供了个很好的思路,即空间换时间的方法。

1 int Count(int v){ 2     int num = 0; 3     switch(v){ 4         case 0x0: num = 0; break; 5         case 0x1: 6         case 0x2: 7         case 0x4: 8         case 0x8: 9         case 0x10:10         case 0x20:11         case 0x40:12         case 0x80: num = 1; break;13         case 0x3:14         case 0x6:15         case 0xc:16         case 0x18:17         case 0x30:18         case 0x60:19         case 0xc0: num = 2; break;20         //...21     }22     return num;23 }*
View Code

 解法五:查表法

典型的空间换时间的算法,应题目要求,只要把0~255中“1”的个数直接存储在数组中即可

【时间复杂度O(1),空间复杂度O(N)】

1 int CountTable[256]={ 2         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 3         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 4         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 5         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 6         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 7         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 8         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 9         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,10         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,11         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,12         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,13         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,14         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,15         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,16         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,17         4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,18 };19 int Count(int v){20     //check parameter21     return CountTable[v];22 }
View Code

 网上其他解法:以32位整型为例

解法六:归并法

相邻两两相加,然后四个四个相加,以此类推。最后就能得出各位之和。

1 int Count(int v){ 2     int num = v; 3     int a = 0x55555555;//01010101010101010101010101010101 4                     //用于相邻两位相加 5     int b = 0x33333333;//00110011001100110011001100110011 6                     //用于相邻四位相加 7     int c = 0x0f0f0f0f;//00001111000011110000111100001111 8     int d = 0x00ff00ff;//00000000111111110000000011111111 9     int e = 0x0000ffff;//0000000000000000111111111111111110     num = (num& a) + ((num >> 1)& a);11     num = (num& b) + ((num >> 2)& b);12     num = (num& c) + ((num >> 4)& c);13     num = (num& d) + ((num >> 8)& d);14     num = (num& e) + ((num >> 16)& e);15     return num;16 }
View Code

解法七:HAKMEN算法

首先将二进制各位三个一组,求出每组中1的个数,然后相邻两组归并,得到六个一组的1的个数,最后巧妙的用除63取余得到结果。

因为2^6 = 64,所以v_0 + v_1 * 64 + v_2 * 64 * 64 = v_0 + v_1 + v_2(mod 63),等号表示同余。(表示现在还不是很理解orz)

1 int Count(unsigned v){ 2     unsigned n; 3     n = (v >> 1)& 033333333333; 4     v = v - n; 5     n = (n >> 1)& 033333333333; 6     v = v - n; 7     v = (v + (v >> 3))& 030707070707; 8     v = v % 63; 9     return v;10 }
View Code

 扩展:由解法三的规律可以轻松判断一个数是否是2的幂。

1 int powof2(int v){2     return (v & (v-1)) == 0;3 }
View Code

 扩展问题:

1.如果变量是32位的DWORD,你会使用上述的哪一个算法,或者改进哪一个算法?

解法三,六,七。(解法五不合适,因为要求的数组太大了:2^32*sizeof(int))

2.给定两个正整数(二进制形式表示)A和B,问把A变为B需要改变多少位(bit)?也就是说,整数A和B的二进制表示中有多少位是不同的?

答案即A^B 中 1 的个数。

转载于:https://www.cnblogs.com/GraceSkyer/p/5836718.html

你可能感兴趣的文章
Mysql性能调优
查看>>
ES6内置方法find 和 filter的区别在哪
查看>>
Android实现 ScrollView + ListView无滚动条滚动
查看>>
硬件笔记之Thinkpad T470P更换2K屏幕
查看>>
getElement的几中属性介绍
查看>>
HTML列表,表格与媒体元素
查看>>
设计器 和后台代码的转换 快捷键
查看>>
STL容器之vector
查看>>
数据中心虚拟化技术
查看>>
复习文件操作
查看>>
SQL Server 使用作业设置定时任务之一(转载)
查看>>
第二阶段冲刺-01
查看>>
BZOJ1045 HAOI2008 糖果传递
查看>>
JavaScript 克隆数组
查看>>
eggs
查看>>
oracle 报错ORA-12514: TNS:listener does not currently know of service requested in connec
查看>>
python3 生成器与迭代器
查看>>
java编写提升性能的代码
查看>>
Abstract Factory Pattern
查看>>
list 容器 排序函数.xml
查看>>